行业新闻您现在的位置:首页 > 新闻资讯 > 行业新闻 > 【半导光电】半导体基础知识大全你知道多少
【半导光电】半导体基础知识大全你知道多少
浏览次数:318      发布于:2023-05-05
​半导体定义我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体(insulator)。把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体(conductor)。常温下导电性能介于导体与绝缘体之间的材料称为半导体(semiconductor)。与导体和绝缘体相比,半导体材料的发现是较晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。发展历史1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发深圳市华联欧国际贸易有限公司是欧美工业备品备件一站式服务商,货源充足,型号齐全,质量可靠,售后服务佳。专业原装行货,正品保证,欢迎来电咨询!所有产品售后有质保,并且有终身免费技术指导。我们有专业的客服团队,24小时进行服务。下面是深圳华联欧小编精心为大家推荐的产品科普一下【半导光电】半导体基础知识大全你知道多少,如果您喜欢可以继续阅读详细浏览一下去看看了解一下吧,关注收藏我们网址,每天为大家推送更多的干货!

​半导体定义

我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体(insulator)。

把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体(conductor)。

常温下导电性能介于导体与绝缘体之间的材料称为半导体(semiconductor)。

与导体和绝缘体相比,半导体材料的发现是较晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

发展历史

1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。

在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。

半导体分类

按化学成分可分为元素半导体和化合物半导体两大类。

锗和硅是常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。

按照其制造技术,半导体的分类可分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。

半导体的特点

半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。

半导体工作原理

本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带,受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。

空穴导电并不是实际运动,而是一种等效。电子导电时等电量的空穴会沿其反方向运动。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。

这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子-空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

掺杂半导体

半导体之所以能广泛应用在今日的数位世界中,凭借的就是其能借由在其晶格中植入杂质改变其电性,这个过程称之为掺杂(doping)。

半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。

掺杂进入本质半导体(intrinsicsemiconductor)的杂质浓度与极性皆会对半导体的导电特性产生很大的影响。而掺杂过的半导体则称为外质半导体(extrinsicsemiconductor)。

杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。

P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。

多数载流子:P型半导体中,空穴的浓度大于自由电子的浓度,称为多数载流子,简称多子。

少数载流子:P型半导体中,自由电子为少数载流子,简称少子。

受主原子:杂质原子中的空位吸收电子,称受主原子。

P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。

N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置形成N型半导体。

多子:N型半导体中,多子为自由电子。

少子:N型半导体中,少子为空穴。

施主原子:杂质原子可以提供电子,称施主原子。

N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

半导体掺杂物

掺杂物依照其带给被掺杂材料的电荷正负被区分为施主(donor)与受主(acceptor)。施主原子带来的价电子(valence electrons)大多会与被掺杂的材料原子产生共价键,进而被束缚。而没有和被掺杂材料原子产生共价键的电子则会被施主原子微弱地束缚住,这个电子又称为施主电子。

和本质半导体的价电子比起来,施主电子跃迁至传导带所需的能量较低,比较容易在半导体材料的晶格中移动,产生电流。虽然施主电子获得能量会跃迁至传导带,但并不会和本质半导体一样留下一个电洞,施主原子在失去了电子后只会固定在半导体材料的晶格中。因此这种因为掺杂而获得多余电子提供传导的半导体称为n型半导体(n-type semiconductor),n代表带负电荷的电子。

和施主相对的,受主原子进入半导体晶格后,因为其价电子数目比半导体原子的价电子数量少,等效上会带来一个的空位,这个多出的空位即可视为电洞。受主掺杂后的半导体称为p型半导体(p-type semiconductor),p代表带正电荷的电洞。

以一个硅的本质半导体来说明掺杂的影响。硅有四个价电子,常用于硅的掺杂物有三价与五价的元素。当只有三个价电子的三价元素如硼(boron)掺杂至硅半导体中时,硼扮演的即是受主的角色,掺杂了硼的硅半导体就是p型半导体。反过来说,如果五价元素如磷(phosphorus)掺杂至硅半导体时,磷扮演施主的角色,掺杂磷的硅半导体成为n型半导体。

一个半导体材料有可能先后掺杂施主与受主,而如何决定此外质半导体为n型或p型必须视掺杂后的半导体中,受主带来的电洞浓度较高或是施主带来的电子浓度较高,亦即何者为此外质半导体的“多数载子”(majoritycarrier)。和多数载子相对的是少数载子(minoritycarrier)。对于半导体元件的操作原理分析而言,少数载子在半导体中的行为有着非常重要的地位。

掺杂对结构的影响

掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本质半导体的能隙之间会出现不同的能阶。施主原子会在靠近传导带的地方产生一个新的能阶,而受主原子则是在靠近价带的地方产生新的能阶。假设掺杂硼原子进入硅,则因为硼的能阶到硅的价带之间仅有0.045电子伏特,远小于硅本身的能隙1.12电子伏特,所以在室温下就可以使掺杂到硅里的硼原子完全解离化(ionize)。

掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n接面(p-n junction)的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n接面后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的传导带或价带都会被弯曲以配合接面处的能带差异。

上述的效应可以用能带图(banddiagram)来解释,。在能带图里横轴代表位置,纵轴则是能量。图中也有费米能阶,半导体的本质费米能阶(intrinsicFermi level)通常以Ei来表示。在解释半导体元件的行为时,能带图是非常有用的工具。

PN结

P型半导体与N型半导体相互接触时,其交界区域称为PN结。P区中的自由空穴和N区中的自由电子要向对方区域扩散,造成正负电荷在PN 结两侧的积累,形成电偶极层(图4)。电偶极层中的电场方向正好阻止扩散的进行。当由于载流子数密度不等引起的扩散作用与电偶层中电场的作用达到平衡时,P区和N区之间形成一定的电势差,称为接触电势差。由于P 区中的空穴向N区扩散后与N区中的电子复合,而N区中的电子向P区扩散后与P 区中的空穴复合,这使电偶极层中自由载流子数减少而形成高阻层,故电偶极层也叫阻挡层,阻挡层的电阻值往往是组成PN结的半导体的原有阻值的几十倍乃至几百倍。

PN结具有单向导电性,半导体整流管就是利用PN结的这一特性制成的。

PN结的另一重要性质是受到光照后能产生电动势,称光生伏打效应,可利用来制造光电池。半导体三极管、可控硅、PN结光敏器件和发光二极管等半导体器件均利用了PN结的特性。

PN结的单向导电性:P端接电源的正极,N端接电源的负极称之为PN结正偏。此时PN结如同一个开关合上,呈现很小的电阻,称之为导通状态。P端接电源的负极,N端接电源的正极称之为PN结反偏,此时PN结处于截止状态,如同开关打开。结电阻很大,当反向电压加大到一定程度,PN结会发生击穿而损坏。

半导体材料的制造

为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位(dislocation)、双晶面(twins),或是堆栈错误(stacking fault)都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。

目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程(Czochralski process)。这种制程将一个单晶的晶种(seed)放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。

半导体的应用

1.最早的实用半导体是电晶体(Transistor)/二极体(Diode)。在无线电收音机(Radio)及电视机(Television)半导体中,作为讯号放大器/整流器用。

2.发展太阳能(Solar Power),也用在光电池(Solar Cell)中。

3.半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。

4.半导体致冷器的发展,它也叫热电致冷器或温差致冷器,它采用了帕尔贴效应.

半导体与集成电路的关系

半导体是指导电性能介于导体和绝缘体之间的材料。我们知道,电路之所以具有某种功能,主要是因为其内部有电流的各种变化,而之所以形成电流,主要是因为有电子在金属线路和电子元件之间流动(运动/迁移)。所以,电子在材料中运动的难易程度,决定了其导电性能。常见的金属材料在常温下电子就很容易获得能量发生运动,因此其导电性能好;绝缘体由于其材料本身特性,电子很难获得导电所需能量,其内部很少电子可以迁移,因此几乎不导电。而半导体材料的导电特性则介于这两者之间,并且可以通过掺入杂质来改变其导电性能,人为控制它导电或者不导电以及导电的容易程度。这一点称之为半导体的可掺杂特性。

前面说过,集成电路的基础是晶体管,发明了晶体管才有可能创造出集成电路,而晶体管的基础则是半导体,因此半导体也是集成电路的基础。半导体之于集成电路,如同土地之于城市。很明显,山地、丘陵多者不适合建造城市,沙化土壤、石灰岩多的地方也不适合建造城市。“建造”城市需要选一块好地,“集成”电路也需要一块合适的基础材料——就是半导体。常见的半导体材料有硅、锗、砷化镓(化合物),其中应用广的、商用化成功的当推“硅”。

那么半导体,特别是硅,为什么适合制造集成电路呢?有多方面的原因。硅是地壳中丰富的元素,仅次于氧。自然界中的岩石、砂砾等存在大量硅酸盐或二氧化硅,这是原料成本方面的原因。硅的可掺杂特性容易控制,容易制造出符合要求的晶体管,这是电路原理方面的原因。硅经过氧化所形成的二氧化硅性能稳定,能够作为半导体器件中所需的优良的绝缘膜使用,这是器件结构方面的原因。关键的一点还是在于集成电路的平面工艺,硅更容易实施氧化、光刻、扩散等工艺,更方便集成,其性能更容易得到控制。因此后续主要介绍的也是基于硅的集成电路知识,对硅晶体管和集成电路工艺有了解后,会更容易理解这个问题。

除了可掺杂性之外,半导体还具有热敏性、光敏性、负电阻率温度、可整流等几个特性,因此半导体材料除了用于制造大规模集成电路之外,还可以用于功率器件、光电器件、压力传感器、热电制冷等用途;利用微电子的超微细加工技术,还可以制成MEMS(微机械电子系统),应用在电子、医疗领域。

(来源:网站,版权归原作者)

买工业品备件到华联欧!深圳市华联欧国际贸易有限公司秉承诚信、创新、服务、快捷的方式致力于提供高品质全方位的工厂电子,工业,机电类产品。依靠科技要求发展,不断为用户提供满意的高科技产品,是我们始终不变的追求。深圳华联欧以一流的产品质量和好的价格得到广大客户的好评,如您有任何工业产品采购需求需要请与我们联系,我们将尽全力为您服务,您的每一次询价我们都将倍加珍惜和重视。我们用专业的技术服务客户,力求精益求精,您的选择,就是我们的动力。以上就是关于《科普一下【半导光电】半导体基础知识大全你知道多少》的全部内容了,如果需要采购欧美工业备品备件,可以来深圳华联欧,价格美丽,欢迎询价采购,热线电话+86 0755 83233703。有关科普一下【半导光电】半导体基础知识大全你知道多少等产品内容就为大家介绍到这里了,感谢您的收看。
0755-83233703 3003467275 info@hlo-trade.com